论文标题

使用智能卡和火车运动数据校准城市铁路运输模拟模型的校准路径选择和火车能力

Calibrating Path Choices and Train Capacities for Urban Rail Transit Simulation Models Using Smart Card and Train Movement Data

论文作者

Mo, Baichuan, Ma, Zhenliang, Koutsopoulos, Haris N., Zhao, Jinhua

论文摘要

运输网络仿真模型通常用于对城市铁路系统的性能和回顾性分析,利用广泛的自动票价收集(AFC)和自动化车辆位置(AVL)数据的可用性。除原点用途流外,对此类模型的重要输入还包括乘客路径选择和火车容量。在文献中经常被忽视的火车容量是表现出很多变化的重要输入。本文提出了一个基于模拟的优化(SBO)框架,以同时使用AFC和AVL数据校准路径选择和城市铁路系统的训练能力。校准被配制为具有黑框目标函数的优化问题。评估了来自SBO解决方法的四个分支的七种算法。使用包括五个场景的实验设计评估算法,代表不同程度的路径选择随机性和拥挤的灵敏度。香港大众运输铁路(MTR)系统的数据用作案例研究。数据用于生成用作“地面真相”的合成观测。结果表明,在所有情况下,响应表面方法(尤其是使用响应表面的约束优化)始终具有良好的性能。提出的方法推动了大规模的模拟应用程序进行监视和计划。

Transit network simulation models are often used for performance and retrospective analysis of urban rail systems, taking advantage of the availability of extensive automated fare collection (AFC) and automated vehicle location (AVL) data. Important inputs to such models, in addition to origin-destination flows, include passenger path choices and train capacity. Train capacity, which has often been overlooked in the literature, is an important input that exhibits a lot of variabilities. The paper proposes a simulation-based optimization (SBO) framework to simultaneously calibrate path choices and train capacity for urban rail systems using AFC and AVL data. The calibration is formulated as an optimization problem with a black-box objective function. Seven algorithms from four branches of SBO solving methods are evaluated. The algorithms are evaluated using an experimental design that includes five scenarios, representing different degrees of path choice randomness and crowding sensitivity. Data from the Hong Kong Mass Transit Railway (MTR) system is used as a case study. The data is used to generate synthetic observations used as "ground truth". The results show that the response surface methods (particularly Constrained Optimization using Response Surfaces) have consistently good performance under all scenarios. The proposed approach drives large-scale simulation applications for monitoring and planning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源