论文标题

三个相不可压缩的Navier的高 - 订购不连续的Galerkin近似 - Stokes/cahn--hilliard模型

High--order discontinuous Galerkin approximation for a three--phase incompressible Navier--Stokes/Cahn--Hilliard model

论文作者

Manzanero, Juan, Redondo, Carlos, Chávez--Módena, Miguel, Rubio, Gonzalo, Valero, Eusebio, Gómez--Álvarez, Susana, Rivero--Jiménez, Ángel

论文摘要

在这项工作中,我们介绍了三个不可压缩的Navier-Stokes/cahn--hilliard数值方法,以模拟三个相流,这是许多工业运营中存在的。然后将数值方法应用于成功解决石油运输问题,例如在石油和天然气行业中发现的问题。这项工作中采用的三个相模型是Cahn--Hilliard漫射界面模型,该模型由Boyer和Lapuerta等人得出。 2006。Cahn--Hilliard模型与Manzanero等人得出的熵 - 不可压缩的Navier耦合。 2019年。空间离散化使用了高阶不连续的Galerkin频谱元素方法,该方法产生高度准确的导致任意几何形状,而隐式 - 义务(IMEX)方法被用作时间离散化。对开发的数值工具进行了两种和三维问题的测试,包括收敛研究,二维射流,三维环形流以及诸如T形管道交叉点之类的逼真的几何形状。

In this work we introduce the development of a three--phase incompressible Navier--Stokes/Cahn--Hilliard numerical method to simulate three--phase flows, present in many industrial operations. The numerical method is then applied to successfully solve oil transport problems, such as those found in the oil and gas industry. The three--phase model adopted in this work is a Cahn--Hilliard diffuse interface model, which was derived by Boyer and Lapuerta et al. 2006. The Cahn--Hilliard model is coupled to the entropy--stable incompressible Navier--Stokes equations model derived by Manzanero et al. 2019. The spatial discretization uses a high--order discontinuous Galerkin spectral element method which yields highly accurate results in arbitrary geometries, while an implicit--explicit (IMEX) method is adopted as temporal discretization. The developed numerical tool is tested for two and three dimensional problems, including a convergence study, a two--dimensional jet, a three--dimensional annular flow, and realistic geometries like T--shaped pipe intersections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源