论文标题
通过学习的单数值,一种有效的非线性反问题的准牛顿法
An efficient Quasi-Newton method for nonlinear inverse problems via learned singular values
论文作者
论文摘要
解决工程和物理科学中的复杂优化问题需要重复计算多维函数衍生物。通常,这需要计算需求的数值差异化,例如扰动技术,这最终限制了时间敏感应用程序的使用。特别是,在非线性相反问题中,使用了高斯 - 纽顿方法,需要从雅各布式计算迭代更新。计算上更有效的替代方法是准Newton方法,其中雅各布的重复计算被大约更新所取代。在这里,我们提出了一种适用于非线性反问题的高效数据驱动的准Newton方法。我们通过使用奇异值分解并学习从模型输出到单数值的映射来计算更新的Jacobian来实现这一目标。这使得准快速的方法可以加快未能累积圆形错误,实现时间关键应用程序并允许灵活地纳入解决不足问题所需的先验知识的速度加速。我们提出了具有实验数据的电阻抗层析成像的高度非线性反问题的结果。
Solving complex optimization problems in engineering and the physical sciences requires repetitive computation of multi-dimensional function derivatives. Commonly, this requires computationally-demanding numerical differentiation such as perturbation techniques, which ultimately limits the use for time-sensitive applications. In particular, in nonlinear inverse problems Gauss-Newton methods are used that require iterative updates to be computed from the Jacobian. Computationally more efficient alternatives are Quasi-Newton methods, where the repeated computation of the Jacobian is replaced by an approximate update. Here we present a highly efficient data-driven Quasi-Newton method applicable to nonlinear inverse problems. We achieve this, by using the singular value decomposition and learning a mapping from model outputs to the singular values to compute the updated Jacobian. This enables a speed-up expected of Quasi-Newton methods without accumulating roundoff errors, enabling time-critical applications and allowing for flexible incorporation of prior knowledge necessary to solve ill-posed problems. We present results for the highly non-linear inverse problem of electrical impedance tomography with experimental data.