论文标题

用于不可压缩电阻MHD的HDG痕量系统的多级块预处理

A Multilevel Block Preconditioner for the HDG Trace System Applied to Incompressible Resistive MHD

论文作者

Muralikrishnan, Sriramkrishnan, Shannon, Stephen, Bui-Thanh, Tan, Shadid, John N.

论文摘要

我们提出了来自高阶杂交不连续的Galerkin(HDG)离散化不可压缩电阻式磁性水力动力学(MHD)的痕量系统的可扩展块预处理策略。我们用最小二乘换向器(BFBT)近似构建块预处理,以构建Schur补体倒数,从而将痕量系统的压力未知数分开。其余的速度,磁场和Lagrange乘数未知数形成一个耦合的节点未知块(上块),为此,系统代数多机(AMG)用于近似逆。 MHD方程的复杂性以及静态凝结HDG痕量系统的代数性质的复杂性使得在系统AMG中选择更顺滑的AMG部分对于块预先调节器的收敛和性能至关重要。我们的数值实验表明,零重叠的ILU(0)作为内部系统AMG的iLu(0)在鲁棒性,非线性迭代和内存要求方面表现最佳。在2D和3D中的几个瞬时测试案例,包括高隆奎斯特(Lundquist)的岛屿结合问题,我们证明了块预处理器的稳健性和并行可伸缩性。另外,对于上块,提出了基于多级近似嵌套解剖的替代节点块系统求解器的初步研究。在2D岛合并问题上,多级近似嵌套的解剖学预处理相对于网格的细化显示出更好的可伸缩性,而相对于lundquist数字缩放,相对较小。

We present a scalable block preconditioning strategy for the trace system coming from the high-order hybridized discontinuous Galerkin (HDG) discretization of incompressible resistive magnetohydrodynamics (MHD). We construct the block preconditioner with a least squares commutator (BFBT) approximation for the inverse of the Schur complement that segregates out the pressure unknowns of the trace system. The remaining velocity, magnetic field, and Lagrange multiplier unknowns form a coupled nodal unknown block (the upper block), for which a system algebraic multigrid (AMG) is used for the approximate inverse. The complexity of the MHD equations together with the algebraic nature of the statically condensed HDG trace system makes the choice of smoother in the system AMG part critical for the convergence and performance of the block preconditioner. Our numerical experiments show GMRES preconditioned by ILU(0) of overlap zero as a smoother inside system AMG performs best in terms of robustness, time per nonlinear iteration and memory requirements. With several transient test cases in 2D and 3D including the island coalescence problem at high Lundquist number we demonstrate the robustness and parallel scalability of the block preconditioner. Additionally for the upper block a preliminary study of an alternate nodal block system solver based on a multilevel approximate nested dissection is presented. On a 2D island coalescence problem the multilevel approximate nested dissection preconditioner shows better scalability with respect to mesh refinement than the system AMG, but is relatively less robust with respect to Lundquist number scaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源