论文标题

芦苇毛刺代码的自动形态合奏解码

Automorphism Ensemble Decoding of Reed-Muller Codes

论文作者

Geiselhart, Marvin, Elkelesh, Ahmed, Ebada, Moustafa, Cammerer, Sebastian, Brink, Stephan ten

论文摘要

Reed-Muller(RM)代码以其在短长度制度中的良好最大可能性(ML)性能而闻名。尽管是最古老的频道代码类之一,但找到低复杂性软输入解码方案仍然是一个开放的问题。在这项工作中,我们根据其丰富的自动形态组提出了一种用于RM代码的多功能解码体系结构。解码算法可以看作是多基础信念传播(MBBP)的概括,并且可以将任何极性或RM解码器用作组成解码器。我们为连续取消(SC),SC-LIST(SCL)和信念传播(BP)基于基于组成的分解提供了广泛的错误速率性能模拟。我们将结果与现有的解码方案进行了比较,并报告了RM(3,7)代码的近ML性能(例如,以竞争性的计算成本为$ 10^{ - 3} $的ML限制的ML限制为0.04 dB。此外,我们为RM代码和SC解码的自动形态亚组提供了一些见解,从而证明了该方法在极地代码方面的理论局限性。

Reed-Muller (RM) codes are known for their good maximum likelihood (ML) performance in the short block-length regime. Despite being one of the oldest classes of channel codes, finding a low complexity soft-input decoding scheme is still an open problem. In this work, we present a versatile decoding architecture for RM codes based on their rich automorphism group. The decoding algorithm can be seen as a generalization of multiple-bases belief propagation (MBBP) and may use any polar or RM decoder as constituent decoders. We provide extensive error-rate performance simulations for successive cancellation (SC)-, SC-list (SCL)- and belief propagation (BP)-based constituent decoders. We furthermore compare our results to existing decoding schemes and report a near-ML performance for the RM(3,7)-code (e.g., 0.04 dB away from the ML bound at BLER of $10^{-3}$) at a competitive computational cost. Moreover, we provide some insights into the automorphism subgroups of RM codes and SC decoding and, thereby, prove the theoretical limitations of this method with respect to polar codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源