论文标题

COVID-19预警系统的基于期望的网络扫描统计量

An Expectation-Based Network Scan Statistic for a COVID-19 Early Warning System

论文作者

Haycock, Chance, Thorpe-Woods, Edward, Walsh, James, O'Hara, Patrick, Giles, Oscar, Dhir, Neil, Damoulas, Theodoros

论文摘要

大伦敦管理局(GLA)对COVID-19的大流行的反应之一汇集了多个大规模和异质数据集,可在伦敦市捕获移动性,运输和交通活动,以更好地了解“忙碌”,并实现有针对性的干预措施和有效的政策制定。作为奥德修斯项目的一部分,我们描述了一个早期训练系统,并引入了基于期望的扫描统计信息,以帮助网络帮助GLA和运输伦敦,了解人口遵循政府COVID-19的指南的程度。我们明确处理位于(道路)网络上的地理固定时间序列数据的情况,并主要关注监测资本大区域的动态。此外,我们还专注于对大量时空区域的检测和报告。我们的方法是通过使基于期望的(EBP)以及使用随机过程进行预测的时间序列来扩展基于网络的扫描统计量(NBS),这使我们能够量化EBP和NBSS框架中的度量不确定性。我们介绍了EBP模型中使用的度量标准的变体,该变体侧重于识别活动比预期更安静的时空区域。

One of the Greater London Authority's (GLA) response to the COVID-19 pandemic brings together multiple large-scale and heterogeneous datasets capturing mobility, transportation and traffic activity over the city of London to better understand 'busyness' and enable targeted interventions and effective policy-making. As part of Project Odysseus we describe an early-warning system and introduce an expectation-based scan statistic for networks to help the GLA and Transport for London, understand the extent to which populations are following government COVID-19 guidelines. We explicitly treat the case of geographically fixed time-series data located on a (road) network and primarily focus on monitoring the dynamics across large regions of the capital. Additionally, we also focus on the detection and reporting of significant spatio-temporal regions. Our approach is extending the Network Based Scan Statistic (NBSS) by making it expectation-based (EBP) and by using stochastic processes for time-series forecasting, which enables us to quantify metric uncertainty in both the EBP and NBSS frameworks. We introduce a variant of the metric used in the EBP model which focuses on identifying space-time regions in which activity is quieter than expected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源