论文标题

在重要性抽样中联合学习

Federated Learning under Importance Sampling

论文作者

Rizk, Elsa, Vlaski, Stefan, Sayed, Ali H.

论文摘要

联合学习封装了由中央单位管理的分布式学习策略。由于它依靠在每次迭代中使用选定数量的代理,并且由于每个代理依次介入其本地数据,因此很自然地研究在联合学习实现中选择代理及其数据的最佳采样策略。通常,仅使用均匀的采样方案。但是,在这项工作中,我们研究了重要性抽样的效果,并设计了对采样剂和数据以绩效指标不均匀指导的计划的方案。我们发现,在涉及采样的方案中,无需替换的计划,所得架构的性能由与每个代理的数据可变性相关的两个因素控制,以及跨代理的模型变异性。我们通过对模拟和真实数据进行实验来说明理论发现,并显示了拟议策略导致的性能的改善。

Federated learning encapsulates distributed learning strategies that are managed by a central unit. Since it relies on using a selected number of agents at each iteration, and since each agent, in turn, taps into its local data, it is only natural to study optimal sampling policies for selecting agents and their data in federated learning implementations. Usually, only uniform sampling schemes are used. However, in this work, we examine the effect of importance sampling and devise schemes for sampling agents and data non-uniformly guided by a performance measure. We find that in schemes involving sampling without replacement, the performance of the resulting architecture is controlled by two factors related to data variability at each agent, and model variability across agents. We illustrate the theoretical findings with experiments on simulated and real data and show the improvement in performance that results from the proposed strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源