论文标题
基于图形的半监督分类器中的影响驱动的数据中毒
Influence-Driven Data Poisoning in Graph-Based Semi-Supervised Classifiers
论文作者
论文摘要
基于图形的半监督学习(GSSL)是一种实用解决方案,可从有限的标记数据以及大量未标记的数据中学习。但是,由于它们依赖已知标签来推断未知标签,因此这些算法对数据质量敏感。因此,必须研究与标记数据相关的潜在威胁,更具体地说是标签中毒。在本文中,我们提出了一种新型的数据中毒方法,该方法有效地近似标签推断的结果,以识别输入,如果中毒会产生最多的错误推断标签。我们对在24个不同的实验环境下的三个分类问题进行广泛评估我们的方法。与艺术的状态相比,我们的影响驱动的攻击会导致错误率的平均增加50 \%,同时通过多个数量级的速度更快。此外,我们的方法可以在训练学习模型之前将应进行调查的投入(重新定价)告知工程师。我们表明,重新定位中毒输入的三分之一(根据其影响选择)将中毒效应降低了50 \%。
Graph-based Semi-Supervised Learning (GSSL) is a practical solution to learn from a limited amount of labelled data together with a vast amount of unlabelled data. However, due to their reliance on the known labels to infer the unknown labels, these algorithms are sensitive to data quality. It is therefore essential to study the potential threats related to the labelled data, more specifically, label poisoning. In this paper, we propose a novel data poisoning method which efficiently approximates the result of label inference to identify the inputs which, if poisoned, would produce the highest number of incorrectly inferred labels. We extensively evaluate our approach on three classification problems under 24 different experimental settings each. Compared to the state of the art, our influence-driven attack produces an average increase of error rate 50\% higher, while being faster by multiple orders of magnitude. Moreover, our method can inform engineers of inputs that deserve investigation (relabelling them) before training the learning model. We show that relabelling one-third of the poisoned inputs (selected based on their influence) reduces the poisoning effect by 50\%.