论文标题
第一形式(q,r) - dowling数字和(q,r) - 惠特尼拉(Whitney-lah)数字的明确公式
Explicit Formulas for the First Form (q,r)-Dowling Numbers and (q,r)-Whitney-Lah Numbers
论文作者
论文摘要
在本文中,R-Whitney-Lah数字的Q-Analogue,也称为(Q,R) - Whitney-Lah数字,由$ L_ {M,R} [N,K] _Q $表示,使用三角复发关系定义。建立了Q-Analogue的几种基本特性,例如垂直和水平复发关系,水平和指数生成功能。此外,使用Q-Difference Operator的概念来得出(Q,R)Whitney-Lah编号的明确公式,尤其是牛顿插值公式的Q-Analogue(Taylor系列的Umbral版本)。此外,获得了第一种形式(q,r)折叠数字的明确公式,该公式按(q,r) - 惠特尼 - 拉赫数字和(q,r) - 惠特尼数字表示。
In this paper, a q-analogue of r-Whitney-Lah numbers, also known as (q,r)-Whitney-Lah number, denoted by $L_{m,r}[n,k]_q$ is defined using the triangular recurrence relation. Several fundamental properties for the q-analogue are established such as vertical and horizontal recurrence relations, horizontal and exponential generating functions. Moreover, an explicit formula for (q,r)-Whitney-Lah number is derived using the concept of q-difference operator, particularly, the q-analogue of Newton's Interpolation Formula (the umbral version of Taylor series). Furthermore, an explicit formula for the first form (q,r)-Dowling numbers is obtained which is expressed in terms of (q,r)-Whitney-Lah numbers and (q,r)-Whitney numbers of the second kind.