论文标题
沮丧的Ising梯子中的相位过渡,具有静态和非拼写催化剂
Phase transitions in the frustrated Ising ladder with stoquastic and nonstoquastic catalysts
论文作者
论文摘要
非阶级退火和绝热量子计算领域的作用是一个积极的讨论主题。我们研究了两腿阶梯上强烈效率的准量子量子iSing模型,以阐明$ \ pm xx $ -type的相互作用的一阶相变。这种相互作用有时被称为stoquastic(负符号)和非常规(正符号)“催化剂”。进行对称性具有对称性的真实空间重新归一化组分析和广泛的密度 - 密度重rix重量化组计算,我们表明,这两种方法获得的相图相互定性,并揭示了一阶量子相位过渡的拓扑稳定,而在两种$ xx $ xx $ -XX $ -Type Catalyss的引入中保持稳定。这是对拓扑不同阶段之间一阶相变的影响的第一个研究。我们的结果表明,非常规催化剂通常不足以消除量子退火和绝热量子计算中的拓扑障碍。
The role of nonstoquasticity in the field of quantum annealing and adiabatic quantum computing is an actively debated topic. We study a strongly-frustrated quasi-one-dimensional quantum Ising model on a two-leg ladder to elucidate how a first-order phase transition with a topological origin is affected by interactions of the $\pm XX$-type. Such interactions are sometimes known as stoquastic (negative sign) and nonstoquastic (positive sign) "catalysts". Carrying out a symmetry-preserving real-space renormalization group analysis and extensive density-matrix renormalization group computations, we show that the phase diagrams obtained by these two methods are in qualitative agreement with each other and reveal that the first-order quantum phase transition of a topological nature remains stable against the introduction of both $XX$-type catalysts. This is the first study of the effects of nonstoquasticity on a first-order phase transition between topologically distinct phases. Our results indicate that nonstoquastic catalysts are generally insufficient for removing topological obstacles in quantum annealing and adiabatic quantum computing.