论文标题
完整的自我撕裂者的刚性,其切线飞机省略了非空置
Rigidity of complete self-shrinkers whose tangent planes omit a nonempty set
论文作者
论文摘要
在本文中,我们证明了球体,平面和右圆柱的刚性结果是满足经典几何假设的唯一自我缩短器,即完全自我脱夹的所有切线仿射子势曼的结合忽略了欧几里得空间的非空置集。这一假设使我们获得了一类新的子策略,与多项式量增长或适当的次数不同。我们也证明了自我膨胀者的类似结果。
In this paper we prove rigidity results for the sphere, the plane and the right circular cylinder as the only self-shrinkers satisfying a classic geometric assumption, namely the union of all tangent affine submanifolds of a complete self-shrinker omits a non-empty set of the Euclidean space. This assumption lead us to a new class of submanifolds, different from those with polynomial volume growth or the proper ones. We also prove an analogous result for self-expanders.