论文标题

在几乎连续的正谱II中进行信号检测的现场理论方法II:张力数据

Field theoretical approach for signal detection in nearly continuous positive spectra II: Tensorial data

论文作者

Lahoche, Vincent, Ouerfelli, Mohamed, Samary, Dine Ousmane, Tamaazousti, Mohamed

论文摘要

张力主体组件分析是对普通主成分分析的概括,重点是张量而不是矩阵来适当描述的数据。本文旨在基于对协方差矩阵的略有概括来给出非扰动的重新归一化组形式主义,以研究近乎连续光谱的困难问题的信号检测。重新归一化组允许构建有效的描述仅在低“能量”(即大特征值)限制中保留相关特征,从而提供了通用描述,从而使信号的存在与目标和可计算数量相关联。其中,在本文中,我们专注于真空期望值。我们展示了实验证据,支持对称破裂与内在检测阈值的存在之间的联系,这与我们的矩阵结论一致,这在通用语句的方向上提供了新的一步。

The tensorial principal component analysis is a generalization of ordinary principal component analysis, focusing on data which are suitably described by tensors rather than matrices. This paper aims at giving the nonperturbative renormalization group formalism based on a slight generalization of the covariance matrix, to investigate signal detection for the difficult issue of nearly continuous spectra. Renormalization group allows constructing effective description keeping only relevant features in the low ``energy'' (i.e. large eigenvalues) limit and thus provides universal descriptions allowing to associate the presence of the signal with objectives and computable quantities. Among them, in this paper, we focus on the vacuum expectation value. We exhibit experimental evidence in favor of a connection between symmetry breaking and the existence of an intrinsic detection threshold, in agreement with our conclusions for matrices, providing a new step in the direction of a universal statement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源