论文标题
$ p $ - 波超导性的Aubry-André-Harper模型中量子相变的动力学
Dynamics of a quantum phase transition in the Aubry-André-Harper model with $p$-wave superconductivity
论文作者
论文摘要
我们通过缓慢和突然的淬火改变了潜在的强度,研究了具有$ p $ - 波超导的一维aubry-andré-harper模型的非平衡动力学。首先,我们通过线性降低潜在的强度$ v $来研究从局部阶段到关键阶段的缓慢动力。定位长度是有限的,其缩放尺寸遵守了千禧年的机制。结果表明,二阶相变线共享相同的关键指数$zν$,从而使相关长度$ν= 0.997 $和动态指数$ z = 1.373 $,这与Aubry-André模型不同。其次,我们还研究了三个不同阶段之间的突然淬灭动力学:局部相,临界相和扩展相。在$ v = 0 $和$ v = \ infty $的限制中,我们通过Loschmidt Echo分析研究了突然的淬火动力。结果表明,如果初始状态和敌对后的哈密顿量在不同的阶段,则洛斯米特回声在某些时间间隔内消失。此外,我们发现,如果初始值在临界阶段,则淬灭的方向与前面提到的两个限制之一相同,并且会发生相似的行为。
We investigate the nonequilibrium dynamics of the one-dimension Aubry-André-Harper model with $p$-wave superconductivity by changing the potential strength with slow and sudden quench. Firstly, we study the slow quench dynamics from localized phase to critical phase by linearly decreasing the potential strength $V$. The localization length is finite and its scaling obeys the Kibble-Zurek mechanism. The results show that the second-order phase transition line shares the same critical exponent $zν$, giving the correlation length $ν=0.997$ and dynamical exponent $z=1.373$, which are different from the Aubry-André model. Secondly, we also study the sudden quench dynamics between three different phases: localized phase, critical phase, and extended phase. In the limit of $V=0$ and $V=\infty$, we analytically study the sudden quench dynamics via the Loschmidt echo. The results suggest that, if the initial state and the post-quench Hamiltonian are in different phases, the Loschmidt echo vanishes at some time intervals. Furthermore, we found that, if the initial value is in the critical phase, the direction of the quench is the same as one of the two limits mentioned before, and similar behaviors will occur.