论文标题
Geonet ++:迭代几何神经网络,具有边缘感知的关节深度和表面正常估计
GeoNet++: Iterative Geometric Neural Network with Edge-Aware Refinement for Joint Depth and Surface Normal Estimation
论文作者
论文摘要
在本文中,我们提出了一个具有边缘感知细化(Geonet ++)的几何神经网络,以共同预测单个图像的深度和表面正常地图。 Geonet ++建立在两流CNN的基础上,捕获了深度和表面正态之间的几何关系,并通过建议的深度到正常和正常的模块。特别是,“深度到正常”模块利用了从深度估算表面正态的最小平方解决方案以提高其质量,而“正常到深度”模块根据对表面正常的约束通过内核回归来完善深度图。边界信息通过边缘感知的改进模块利用。 Geonet ++有效地预测了具有强3D一致性和锐度边界的深度和表面正态,从而可以更好地重建3D场景。请注意,Geonet ++是通用的,可以在其他深度/正常预测框架中使用,以提高深度和表面正常的3D重建和像素精度的质量。此外,我们提出了一个新的3D几何度量(3DGM),用于评估3D中的深度预测。与关注评估像素误差/准确性的当前指标相反,3DGM测量预测的深度是否可以重建高质量的3D表面正常。对于许多3D应用域而言,这是一个更自然的指标。我们在NYUD-V2和KITTI数据集上进行的实验验证了Geonet ++是否产生了良好的边界细节,并且可以使用预测的深度来重建高质量的3D表面。代码已公开可用。
In this paper, we propose a geometric neural network with edge-aware refinement (GeoNet++) to jointly predict both depth and surface normal maps from a single image. Building on top of two-stream CNNs, GeoNet++ captures the geometric relationships between depth and surface normals with the proposed depth-to-normal and normal-to-depth modules. In particular, the "depth-to-normal" module exploits the least square solution of estimating surface normals from depth to improve their quality, while the "normal-to-depth" module refines the depth map based on the constraints on surface normals through kernel regression. Boundary information is exploited via an edge-aware refinement module. GeoNet++ effectively predicts depth and surface normals with strong 3D consistency and sharp boundaries resulting in better reconstructed 3D scenes. Note that GeoNet++ is generic and can be used in other depth/normal prediction frameworks to improve the quality of 3D reconstruction and pixel-wise accuracy of depth and surface normals. Furthermore, we propose a new 3D geometric metric (3DGM) for evaluating depth prediction in 3D. In contrast to current metrics that focus on evaluating pixel-wise error/accuracy, 3DGM measures whether the predicted depth can reconstruct high-quality 3D surface normals. This is a more natural metric for many 3D application domains. Our experiments on NYUD-V2 and KITTI datasets verify that GeoNet++ produces fine boundary details, and the predicted depth can be used to reconstruct high-quality 3D surfaces. Code has been made publicly available.