论文标题

均匀可变密度湍流的过滤,平均和比例依赖性

Filtering, averaging and scale dependency in homogeneous variable density turbulence

论文作者

Saenz, J. A., Aslangil, D., Livescu, D.

论文摘要

我们研究了从过滤和从合奏或雷诺平均湍流流场获得的统计数据作为长度尺度的函数。滤波方法中的全面中心矩表示为通用波动数量的内部产物,$ q'(ξ,x)= q(ξ) - \ edrine q(x)$,代表field $ q(ξ)$的波动,在任何点$ξ$中,均以$ x $ $ x $的过滤值表示。对于正定过滤器内核,这些表达式提供了一个规模分辨的框架,并具有任何长度尺度上的统计和可实现条件。在小规模的限制中,分布量表的统计数据为零。在大规模的限制中,规模分辨率的统计和可靠性条件与雷诺平均描述相同。使用均质可变密度湍流的直接数值模拟(DNS),我们诊断雷诺压力,$ \ nathcal {t} _ {ij} $,解决的动能,$ k_r $,$ k_r $,turmulent-flux速度,湍流质量速度,$ a_i $ $ a_i $&a_i $和密度coversen cover inter n s $ $ $ $ $ $ $ $ $ b $ b。这些变量及其管理方程式中的术语分别在小规模和大规模限制下分别在零和雷诺平均定义之间差异。在中间尺度上,管理方程式在雷诺平均极限中不活跃的术语之间表现出相互作用。例如,在雷诺平均极限中,$ b $遵循由破坏术语驱动的腐烂过程;在中间长度尺度上,这是生产,再分配,破坏和运输之间的平衡,随着密度光谱的发展,$ b $的生长,然后在混合变得足够强的情况下腐烂。这项工作支持了一个广义的,长度尺度的自适应模型的概念,该模型在高分辨率下收敛到DNS,并在粗分辨率下依靠雷诺平均统计数据。

We investigate relationships between statistics obtained from filtering and from ensemble or Reynolds-averaging turbulence flow fields as a function of length scale. Generalized central moments in the filtering approach are expressed as inner products of generalized fluctuating quantities, $q'(ξ,x)=q(ξ)-\overline q(x)$, representing fluctuations of a field $q(ξ)$, at any point $ξ$, with respect to its filtered value at $x$. For positive-definite filter kernels, these expressions provide a scale-resolving framework, with statistics and realizability conditions at any length scale. In the small-scale limit, scale-resolving statistics become zero. In the large-scale limit, scale-resolving statistics and realizability conditions are the same as in the Reynolds-averaged description. Using direct numerical simulations (DNS) of homogeneous variable density turbulence, we diagnose Reynolds stresses, $\mathcal{T}_{ij}$, resolved kinetic energy, $k_r$, turbulent mass-flux velocity, $a_i$, and density-specific volume covariance, $b$, defined in the scale-resolving framework. These variables, and terms in their governing equations, vary smoothly between zero and their Reynolds-averaged definitions at the small and large scale limits, respectively. At intermediate scales, the governing equations exhibit interactions between terms that are not active in the Reynolds-averaged limit. For example, in the Reynolds-averaged limit, $b$ follows a decaying process driven by a destruction term; at intermediate length scales it is a balance between production, redistribution, destruction, and transport, where $b$ grows as the density spectrum develops, and then decays when mixing becomes strong enough. This work supports the notion of a generalized, length-scale adaptive model that converges to DNS at high resolutions, and to Reynolds-averaged statistics at coarse resolutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源