论文标题

Griffiths双锥组是三倍的同构

The Griffiths double cone group is isomorphic to the triple

论文作者

Corson, Samuel M.

论文摘要

结果表明,格里菲斯双锥形空间的基本组与三锥体的基础是同构。通常,如果$κ$是红衣主教,使得$ 2 \ leqκ\ leq 2^{\ aleph_0} $,那么$κ$ -fold锥体具有与双锥相同的基本组。产生的同构是非构造性的,$ 2 $的基本组和$κ$ - 折叠的圆锥($ 2 <κ$)之间没有同构性,可以通过连续映射实现。我们还证明了詹姆斯·W·坎农(James W. Cannon)和格雷戈里·R·康纳(Gregory R.

It is shown that the fundamental group of the Griffiths double cone space is isomorphic to that of the triple cone. More generally if $κ$ is a cardinal such that $2 \leq κ\leq 2^{\aleph_0}$ then the $κ$-fold cone has the same fundamental group as the double cone. The isomorphisms produced are non-constructive, and no isomorphism between the fundamental group of the $2$- and of the $κ$-fold cones, with $2 < κ$, can be realized via continuous mappings. We also prove a conjecture of James W. Cannon and Gregory R. Conner which states that the fundamental group of the Griffiths double cone space is isomorphic to that of the harmonic archipelago.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源