论文标题
与远程互动的ISing连接矩阵的逆问题
Inverse problem for Ising connection matrix with long-range interaction
论文作者
论文摘要
在本文中,我们检查了D维超立方体晶格上的ISING系统,并解决了一个反问题,当我们知道它的特征值时,我们必须确定Ising Connection矩阵的相互作用常数。此外,我们定义限制,允许随机数序列为连接矩阵频谱。我们使用先前获得的分析表达式来用于考虑任意的远程相互作用并假设周期性边界条件的ISING连接矩阵的特征值。
In the present paper, we examine Ising systems on d-dimensional hypercube lattices and solve an inverse problem where we have to determine interaction constants of an Ising connection matrix when we know a spectrum of it eigenvalues. In addition, we define restrictions allowing a random number sequence to be a connection matrix spectrum. We use the previously obtained analytical expressions for the eigenvalues of Ising connection matrices accounting for an arbitrary long-range interaction and supposing periodic boundary conditions.