论文标题

与远程互动的ISing连接矩阵的逆问题

Inverse problem for Ising connection matrix with long-range interaction

论文作者

Litinskii, Leonid, Kryzhanovsky, Boris

论文摘要

在本文中,我们检查了D维超立方体晶格上的ISING系统,并解决了一个反问题,当我们知道它的特征值时,我们必须确定Ising Connection矩阵的相互作用常数。此外,我们定义限制,允许随机数序列为连接矩阵频谱。我们使用先前获得的分析表达式来用于考虑任意的​​远程相互作用并假设周期性边界条件的ISING连接矩阵的特征值。

In the present paper, we examine Ising systems on d-dimensional hypercube lattices and solve an inverse problem where we have to determine interaction constants of an Ising connection matrix when we know a spectrum of it eigenvalues. In addition, we define restrictions allowing a random number sequence to be a connection matrix spectrum. We use the previously obtained analytical expressions for the eigenvalues of Ising connection matrices accounting for an arbitrary long-range interaction and supposing periodic boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源