论文标题

Sensenet:文档结构的神经键形生成

SenSeNet: Neural Keyphrase Generation with Document Structure

论文作者

Luo, Yichao, Li, Zhengyan, Wang, Bingning, Xing, Xiaoyu, Zhang, Qi, Huang, Xuanjing

论文摘要

Keyphrase生成(KG)是从给定文档或文学作品中生成中心主题的任务,该主题捕获了了解内容所需的重要信息。诸如科学文献之类的文档包含丰富的元句子信息,代表了文档的逻辑语义结构。但是,先前的方法忽略了文档逻辑结构的约束,因此它们错误地从不重要的句子中生成了键形。为了解决这个问题,我们提出了一种称为句子选择网络(Sensenet)的新方法,以将元句子电感偏置纳入kg。在Sensenet中,我们使用直通估算器进行端到端培训,并将弱的监督纳入句子选择模块的训练中。实验结果表明,Sensenet可以根据SEQ2SEQ框架始终如一地提高主要KG模型的性能,这证明了捕获结构信息并区分句子在KG任务中的重要性的有效性。

Keyphrase Generation (KG) is the task of generating central topics from a given document or literary work, which captures the crucial information necessary to understand the content. Documents such as scientific literature contain rich meta-sentence information, which represents the logical-semantic structure of the documents. However, previous approaches ignore the constraints of document logical structure, and hence they mistakenly generate keyphrases from unimportant sentences. To address this problem, we propose a new method called Sentence Selective Network (SenSeNet) to incorporate the meta-sentence inductive bias into KG. In SenSeNet, we use a straight-through estimator for end-to-end training and incorporate weak supervision in the training of the sentence selection module. Experimental results show that SenSeNet can consistently improve the performance of major KG models based on seq2seq framework, which demonstrate the effectiveness of capturing structural information and distinguishing the significance of sentences in KG task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源