论文标题
生物神经网络的低阶模型
Low-Order Model of Biological Neural Networks
论文作者
论文摘要
生物神经网络的生物学上合理的低阶模型(LOM)是树突状淋巴结/树木,尖峰/非上介神经元的复发等级网络,无治疗/监督/有监督的协调/累积学习机制,反馈连接以及最高通用方案。这些组件模型是通过使LOM轻松学习和检索而无需差异化,优化或迭代,并群集,检测和识别多个/分层损坏,扭曲,扭曲和遮挡的时间和空间模式来实现这些组件模型的动机。
A biologically plausible low-order model (LOM) of biological neural networks is a recurrent hierarchical network of dendritic nodes/trees, spiking/nonspiking neurons, unsupervised/ supervised covariance/accumulative learning mechanisms, feedback connections, and a scheme for maximal generalization. These component models are motivated and necessitated by making LOM learn and retrieve easily without differentiation, optimization, or iteration, and cluster, detect and recognize multiple/hierarchical corrupted, distorted, and occluded temporal and spatial patterns.