论文标题

使用深度自回归政策网络端到端量子控制噪声

Noise-Robust End-to-End Quantum Control using Deep Autoregressive Policy Networks

论文作者

Yao, Jiahao, Köttering, Paul, Gundlach, Hans, Lin, Lin, Bukov, Marin

论文摘要

变化量子本素层最近受到了越来越多的关注,因为它们可以使用量子计算设备来找到解决复杂问题的解决方案,例如地面能量和强相关量子多体系统的基态。在许多应用中,构成了巨大挑战的连续参数和离散参数的优化。使用增强学习(RL),我们提出了一种混合政策梯度算法,能够以不确定性的方式同时优化连续和离散的自由度。混合政策是由深层自回旋神经网络建模的,以捕获因果关系。我们采用算法在单一过程中准备不可综合的量子碱模型的基态,通过广义量子近似优化的优化ANSATZ进行了参数:RL药剂解决了构建构建预期设置的单位序列的离散组合问题,同时将这些单位置于这些持续效果上,以使这些持续效果效果。我们通过考虑三个不确定性来源来证明代理的噪声特征:经典和量子测量噪声以及控制单位持续时间的误差。我们的工作表现出强化学习与量子控制之间的有益协同作用。

Variational quantum eigensolvers have recently received increased attention, as they enable the use of quantum computing devices to find solutions to complex problems, such as the ground energy and ground state of strongly-correlated quantum many-body systems. In many applications, it is the optimization of both continuous and discrete parameters that poses a formidable challenge. Using reinforcement learning (RL), we present a hybrid policy gradient algorithm capable of simultaneously optimizing continuous and discrete degrees of freedom in an uncertainty-resilient way. The hybrid policy is modeled by a deep autoregressive neural network to capture causality. We employ the algorithm to prepare the ground state of the nonintegrable quantum Ising model in a unitary process, parametrized by a generalized quantum approximate optimization ansatz: the RL agent solves the discrete combinatorial problem of constructing the optimal sequences of unitaries out of a predefined set and, at the same time, it optimizes the continuous durations for which these unitaries are applied. We demonstrate the noise-robust features of the agent by considering three sources of uncertainty: classical and quantum measurement noise, and errors in the control unitary durations. Our work exhibits the beneficial synergy between reinforcement learning and quantum control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源