论文标题
有向树连接的极端结果
Extremal results for directed tree connectivity
论文作者
论文摘要
对于Digraph $ d =(v(d),a(d))$,$ s \ subseteq v(d)$带有$ r \ in s $ in s $和$ | s | \ geq 2 $,a $(s,r)$ - tree是$ r $ rug的$ r $ s $ s \ subseteq v(t)。如果$ a(t_1)\ cap a(t_2)= \ emptyset $,则两个$(s,r)$ - 树$ t_1 $和$ t_2 $。如果$ v(t_1)\ cap v(t_2)= s $,则两个Arc-disjoint $(S,R)$ - 树$ T_1 $和$ T_2 $在内部不相交。令$κ_{s,r}(d)$和$λ_{s,r}(d)$分别是内部分离的最大数量和arc-disjoint $(s,r)$ - $ d $中的树。 $ d $ $ d $的广义$ k $ -vertex-strong连接定义为$κ_k(d)= \ min \ {κ__{κ_{k {s,r}(d)\ mid s \ mid s \ subset v(d),| s | s | = k = k,in s \}。 $$λ_k(D)= \min \{λ_{S,r}(D)\mid S\subset V(D), |S|=k, r\in S\}.$$ The generalized $k$-vertex-strong connectivity and generalized $k$-arc-strong connectivity are also called directed tree connectivity which could be seen as a generalization of classical connectivity of digraphs. digraph $ d =(v(d),a(d))$称为最低概括$(k,\ ell)$ - $ - 顶点(分别为,,arc) - 如果$κ__k(d)\ geq \ ell $(分别为$λ_k($λ_k(d)\ geq \ ell $),则连接$λ_k(d),但$ e e \ e \, $κ_K(d-e)\ leq \ ell-1 $(分别为$λ_k(d-e)\ leq \ ell-1 $)。在本文中,我们研究了最小概括的$(k,\ ell)$ - 顶点(分别为ARC) - 连接的Digraphs。我们计算了这些挖掘物的最小和最大尺寸,并为$ k $和$ \ ell $的某些成对的Digraphs提供了此类挖掘的特征。
For a digraph $D=(V(D), A(D))$, and a set $S\subseteq V(D)$ with $r\in S$ and $|S|\geq 2$, an $(S, r)$-tree is an out-tree $T$ rooted at $r$ with $S\subseteq V(T)$. Two $(S, r)$-trees $T_1$ and $T_2$ are said to be arc-disjoint if $A(T_1)\cap A(T_2)=\emptyset$. Two arc-disjoint $(S, r)$-trees $T_1$ and $T_2$ are said to be internally disjoint if $V(T_1)\cap V(T_2)=S$. Let $κ_{S,r}(D)$ and $λ_{S,r}(D)$ be the maximum number of internally disjoint and arc-disjoint $(S, r)$-trees in $D$, respectively. The generalized $k$-vertex-strong connectivity of $D$ is defined as $$κ_k(D)= \min \{κ_{S,r}(D)\mid S\subset V(D), |S|=k, r\in S\}.$$ Similarly, the generalized $k$-arc-strong connectivity of $D$ is defined as $$λ_k(D)= \min \{λ_{S,r}(D)\mid S\subset V(D), |S|=k, r\in S\}.$$ The generalized $k$-vertex-strong connectivity and generalized $k$-arc-strong connectivity are also called directed tree connectivity which could be seen as a generalization of classical connectivity of digraphs. A digraph $D=(V(D), A(D))$ is called minimally generalized $(k, \ell)$-vertex (respectively, arc)-strongly connected if $κ_k(D)\geq \ell$ (respectively, $λ_k(D)\geq \ell$) but for any arc $e\in A(D)$, $κ_k(D-e)\leq \ell-1$ (respectively, $λ_k(D-e)\leq \ell-1$). In this paper, we study the minimally generalized $(k, \ell)$-vertex (respectively, arc)-strongly connected digraphs. We compute the minimum and maximum sizes of these digraphs, and give characterizations of such digraphs for some pairs of $k$ and $\ell$.