论文标题

与Fitzhugh-Nagumo Ode应用的密集和卷积神经网络的参数估计

Parameter Estimation with Dense and Convolutional Neural Networks Applied to the FitzHugh-Nagumo ODE

论文作者

Rudi, Johann, Bessac, Julie, Lenzi, Amanda

论文摘要

机器学习算法已成功地用于在弱假设上近似于地图的结构和特性。我们使用密集和卷积层提出深层神经网络来解决一个反问题,我们试图估计Fitzhugh-Nagumo模型的参数,该模型由普通微分方程(ODES)的非线性系统组成。我们利用神经网络来近似重建图,以从观察数据中进行模型参数估计,其中数据来自ode的解,并采用代表生物神经元动态尖峰膜电位的时间序列的形式。我们针对这个动态模型,因为它在推理环境中带来的计算挑战,即具有高度非线性和非凸数据错误拟合项,并且仅允许在参数上提供弱信息的先验。这些挑战会导致传统优化失败和替代算法,以表现出巨大的计算成本。我们量化了从神经网络获得的模型参数的预测误差,并研究了有或不存在观测数据中噪声的网络体系结构的影响。我们将基于神经网络的重建图的框架概括为同时估算自相关观察噪声的颂歌参数和参数。我们的结果表明,深神经网络具有在动态模型和随机过程中估计参数的潜力,并且它们能够准确预测Fitzhugh-Nagumo模型的参数。

Machine learning algorithms have been successfully used to approximate nonlinear maps under weak assumptions on the structure and properties of the maps. We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters of a FitzHugh-Nagumo model, which consists of a nonlinear system of ordinary differential equations (ODEs). We employ the neural networks to approximate reconstruction maps for model parameter estimation from observational data, where the data comes from the solution of the ODE and takes the form of a time series representing dynamically spiking membrane potential of a biological neuron. We target this dynamical model because of the computational challenges it poses in an inference setting, namely, having a highly nonlinear and nonconvex data misfit term and permitting only weakly informative priors on parameters. These challenges cause traditional optimization to fail and alternative algorithms to exhibit large computational costs. We quantify the prediction errors of model parameters obtained from the neural networks and investigate the effects of network architectures with and without the presence of noise in observational data. We generalize our framework for neural network-based reconstruction maps to simultaneously estimate ODE parameters and parameters of autocorrelated observational noise. Our results demonstrate that deep neural networks have the potential to estimate parameters in dynamical models and stochastic processes, and they are capable of predicting parameters accurately for the FitzHugh-Nagumo model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源