论文标题
极端黑洞
Extreme Black Hole Anabasis
论文作者
论文摘要
我们研究$ \ Mathsf {SL}(2)$ bertotti-Robinson Universe的球形对称扰动的变换属性,并确定一个不变的$μ$,该$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。伯克霍夫定理允许的唯一反应是破坏$ ads_2 \ times s^2 $边界,并建立了一个渐近平坦的Reissner-nordström黑洞的外部,并使用$ q = m \ sqrt {1-μ/4} $。我们称这种反应在边界条件上改变了变化。我们表明,在Bertotti-Robinson中添加线性解散扰动可能被认为是定义连接的$ ads_2 \ times s^2 $的边界条件。连接的$ ads_2 $是一个几乎是-ADS_2 $,其$ \ Mathsf {SL}(2)$适当地破裂,以维持与Reissner-Nordström的渐近平坦区域的连接。我们在连接的$ ads_2 \ times s^2 $中对物质进行反应计算,并证明它正确捕获了渐近平坦的黑洞的动力学。
We study the $\mathsf{SL}(2)$ transformation properties of spherically symmetric perturbations of the Bertotti-Robinson universe and identify an invariant $μ$ that characterizes the backreaction of these linear solutions. The only backreaction allowed by Birkhoff's theorem is one that destroys the $AdS_2\times S^2$ boundary and builds the exterior of an asymptotically flat Reissner-Nordström black hole with $Q=M\sqrt{1-μ/4}$. We call such backreaction with boundary condition change an anabasis. We show that the addition of linear anabasis perturbations to Bertotti-Robinson may be thought of as a boundary condition that defines a connected $AdS_2\times S^2$. The connected $AdS_2$ is a nearly-$AdS_2$ with its $\mathsf{SL}(2)$ broken appropriately for it to maintain connection to the asymptotically flat region of Reissner-Nordström. We perform a backreaction calculation with matter in the connected $AdS_2\times S^2$ and show that it correctly captures the dynamics of the asymptotically flat black hole.