论文标题

ISO点:与混合表示的优化神经隐式表面

Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

论文作者

Yifan, Wang, Wu, Shihao, Oztireli, Cengiz, Sorkine-Hornung, Olga

论文摘要

神经隐式功能已成为3D中表面的强大表示。这样的功能可以将带有复杂细节的高质量表面编码为深神经网络的参数。但是,针对准确和鲁棒重建的参数进行优化仍然是一个挑战,尤其是当输入数据嘈杂或不完整时。在这项工作中,我们开发了一种混合神经表面表示,使我们能够施加几何学意识和正则化,从而显着提高了重建的忠诚度。我们建议将\ emph {iso-points}用作神经隐式函数的明确表示。这些点是在训练过程中按时计算和更新的,以捕获重要的几何特征并对优化施加几何约束。我们证明,可以采用我们的方法来改善从多视图图像或点云中重建神经隐式表面的最新技术。定量和定性评估表明,与现有的采样和优化方法相比,我们的方法允许更快地收敛,更好的概括以及细节和拓扑的准确恢复。

Neural implicit functions have emerged as a powerful representation for surfaces in 3D. Such a function can encode a high quality surface with intricate details into the parameters of a deep neural network. However, optimizing for the parameters for accurate and robust reconstructions remains a challenge, especially when the input data is noisy or incomplete. In this work, we develop a hybrid neural surface representation that allows us to impose geometry-aware sampling and regularization, which significantly improves the fidelity of reconstructions. We propose to use \emph{iso-points} as an explicit representation for a neural implicit function. These points are computed and updated on-the-fly during training to capture important geometric features and impose geometric constraints on the optimization. We demonstrate that our method can be adopted to improve state-of-the-art techniques for reconstructing neural implicit surfaces from multi-view images or point clouds. Quantitative and qualitative evaluations show that, compared with existing sampling and optimization methods, our approach allows faster convergence, better generalization, and accurate recovery of details and topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源