论文标题

球形软机器人臂的基于视觉的传感方法

A Vision-based Sensing Approach for a Spherical Soft Robotic Arm

论文作者

Hofer, Matthias, Sferrazza, Carmelo, D'Andrea, Raffaello

论文摘要

感觉反馈对于控制软机器人系统的控制至关重要,并可以在各种不同的任务中部署。本体感受是指感觉机器人自己的状态,并且至关重要,以便在实验室环境外部署软机器人系统,即没有外部感应(例如运动捕获系统)可用。 提出了一种由织物制成的软机器人臂的基于视觉的传感方法,利用相机提供的高分辨率感觉反馈。传感器和软结构之间无机械相互作用,因此保留了软系统的符合性。讨论了将摄像机集成到可充气的,基于织物的波纹管执行器中。三个执行器,每个执行器都具有集成摄像头,用于控制球形机器人臂,并同时提供两个旋转自由度的感觉反馈。卷积神经网络体系结构预测了从相机图像中描述机器人方向的两个角度。在监督学习方法的训练阶段及其评估的训练阶段,动作捕获系统提供了地面真相数据。 基于摄像机的传感方法能够实时估算方向的准确度约为一个度。通过使用感觉反馈来控制闭环中机器人臂的方向,可以证明传感方法的可靠性。

Sensory feedback is essential for the control of soft robotic systems and to enable deployment in a variety of different tasks. Proprioception refers to sensing the robot's own state and is of crucial importance in order to deploy soft robotic systems outside of laboratory environments, i.e. where no external sensing, such as motion capture systems, is available. A vision-based sensing approach for a soft robotic arm made from fabric is presented, leveraging the high-resolution sensory feedback provided by cameras. No mechanical interaction between the sensor and the soft structure is required and consequently, the compliance of the soft system is preserved. The integration of a camera into an inflatable, fabric-based bellow actuator is discussed. Three actuators, each featuring an integrated camera, are used to control the spherical robotic arm and simultaneously provide sensory feedback of the two rotational degrees of freedom. A convolutional neural network architecture predicts the two angles describing the robot's orientation from the camera images. Ground truth data is provided by a motion capture system during the training phase of the supervised learning approach and its evaluation thereafter. The camera-based sensing approach is able to provide estimates of the orientation in real-time with an accuracy of about one degree. The reliability of the sensing approach is demonstrated by using the sensory feedback to control the orientation of the robotic arm in closed-loop.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源