论文标题

使用基于注意的神经网络绘制化学反应的空间

Mapping the Space of Chemical Reactions Using Attention-Based Neural Networks

论文作者

Schwaller, Philippe, Probst, Daniel, Vaucher, Alain C., Nair, Vishnu H., Kreutter, David, Laino, Teodoro, Reymond, Jean-Louis

论文摘要

有机反应通常分配给包含具有相似试剂和机制的反应的类。反应类别促进了复杂概念和通过化学反应空间的有效导航的交流。但是,分类过程是一项繁琐的任务。它需要通过对反应,反应中心中分子数的注释以及反应中心和反应物和试剂之间的区别来鉴定相应的反应类模板。这项工作表明,基于变压器的模型可以从非注销的,简单的基于文本的化学反应表示。我们的最佳模型达到98.2%的分类精度。我们还表明,学到的表示形式可以用作反应指纹,这些反应指纹捕获反应类别之间的细粒度差异比传统反应指纹更好。通过提供视觉聚类和相似性搜索的交互式反应,可以说明了我们学到的指纹对化学反应空间的见解。

Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires the identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction center, and the distinction between reactants and reagents. This work shows that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源