论文标题
来自Khovanov同源性的一致性同态家族
A family of concordance homomorphisms from Khovanov homology
论文作者
论文摘要
通过考虑将Lee和$ e(-1)$差异的Khovanov同源性的版本,我们构建了一个$ 1 $ - 参数的一致性同构家族,类似于从结Floer同源物中的Upsilon不变性。这种不变的给出了切片属的下限,可以用来证明某些无限的椒盐脆饼结中的某些无限家族在平滑的一致性组中是线性独立的。
By considering a version of Khovanov homology incorporating both the Lee and $E(-1)$ differentials, we construct a $1$-parameter family of concordance homomorphisms similar to the Upsilon invariant from knot Floer homology. This invariant gives lower bounds on the slice genus and can be used to prove that certain infinite families of pretzel knots are linearly independent in the smooth concordance group.