论文标题
一种用于分离的算法的聚类过渡
An Algorithm for the Separation-Preserving Transition of Clusterings
论文作者
论文摘要
簇的可分离性是聚类中最需要的属性之一。在广泛的设置中,出现相同数据集的不同聚类。我们对需要明确的,一个可分离的聚类向另一个聚类进行明确的,逐渐过渡的应用程序感兴趣。这种过渡应该是一系列简单,自然的步骤,可以维护整个群集的可分离性。 我们为这种过渡设计了一种算法。我们利用有界形状的分区和传输层面上的可分离性和线性编程的紧密联系:可分离的聚类位于分区多面体的边界上,形成了相应运输多层的顶点的子集,并且两种多型的电路都被视为顺序或周期性交换的clusesers clusters clusters clusters clusersters的序列或周期性交换。这允许一种自然的方法通过两次步行的组合来实现所需的过渡:在运输多层中的两个所谓的径向聚类之间步行,通过适应敏感性分析和参数编程的经典工具计算得出;从可分离的聚类到相应的径向聚类,通过量身定制的迭代常规更新集群尺寸并重新降低项目的群集分配。
The separability of clusters is one of the most desired properties in clustering. There is a wide range of settings in which different clusterings of the same data set appear. We are interested in applications where there is a need for an explicit, gradual transition of one separable clustering into another one. This transition should be a sequence of simple, natural steps that upholds separability of the clusters throughout. We design an algorithm for such a transition. We exploit the intimate connection of separability and linear programming over bounded-shape partition and transportation polytopes: separable clusterings lie on the boundary of partition polytopes, form a subset of the vertices of the corresponding transportation polytopes, and circuits of both polytopes are readily interpreted as sequential or cyclical exchanges of items between clusters. This allows for a natural approach to achieve the desired transition through a combination of two walks: an edge walk between two so-called radial clusterings in a transportation polytope, computed through an adaptation of classical tools of sensitivity analysis and parametric programming; and a walk from a separable clustering to a corresponding radial clustering, computed through a tailored, iterative routine updating cluster sizes and re-optimizing the cluster assignment of items.