论文标题

$ \ w $ - 理性形式的产品

The product on $\W$-spaces of rational forms

论文作者

Zuevsky, A.

论文摘要

令$ v $为准形式的分级限制性顶点代数,$ w $为其模块,$ \ w_ {z_1,\ ldots,z_n} $是带有复杂参数的理性差分形式的空间,$(z_1,z_1,\ ldots,z_n)$ for $ n $ n $ n \ gee 0 $ 0 $。使用几何解释,根据两个Riemann Spheres缝制,我们定义了两个空间的元素$ \ w_ {x_1,\ ldots,x_k} $和$ \ w_ {y_1,\ ldots,\ ldots,y_n} $,并研究其属性。 A product is introduced also for elements of two spaces $C^k_m(V, \W)$ $\times$ $C^n_{m'}(V, \W)$ $\to$ $C^{k+n}_{m+m'}(V, \W)$ of the corresponding chain complex of rational differential forms invariant with respect to transformations of complex parameters.

Let $V$ be a quasi-conformal grading-restricted vertex algebra, $W$ be its module, and $\W_{z_1, \ldots, z_n}$ be the space of rational differential forms with complex parameters $(z_1, \ldots, z_n)$ for $n \ge 0$. Using geometric interpretation in terms of two Riemann spheres sewing we define a product of elements of two spaces $\W_{x_1, \ldots, x_k}$ and $\W_{y_1, \ldots, y_n}$, and study its properties. A product is introduced also for elements of two spaces $C^k_m(V, \W)$ $\times$ $C^n_{m'}(V, \W)$ $\to$ $C^{k+n}_{m+m'}(V, \W)$ of the corresponding chain complex of rational differential forms invariant with respect to transformations of complex parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源