论文标题

几次学习的标签较少吗?

Are Fewer Labels Possible for Few-shot Learning?

论文作者

Li, Suichan, Chen, Dongdong, Chen, Yinpeng, Yuan, Lu, Zhang, Lei, Chu, Qi, Yu, Nenghai

论文摘要

由于其数据和标签非常有限,因此很少有学习挑战。最新的大型转移(位)研究表明,在不同域中的大规模标记数据集上进行预处理可以极大地受益。本文提出了一个更具挑战性的问题:“我们可以在预训练(没有标签)和微调(标签较少)中使用尽可能少的标签来进行几次学习吗?”。 我们的关键见解是,在功能空间中,目标样本的聚类是我们需要进行几次填充所需的。它解释了为什么香草无监督的预处理(聚类差)比监督的更糟糕。在本文中,我们提出了无监督的预告片,即使目标数据的数量非常有限,也可以通过涉及目标数据来获得更好的聚类。改进的聚类结果对于识别用户标记的最具代表性的样本(“特征样本”)具有很高的价值,并且作为回报,持续使用标签的特征示例进一步改善了聚类。因此,我们提出特征 - 通过利用聚类和本征示例在填充中的共同进化来实现更少的射击学习。我们对10个不同的几个射击目标数据集进行了实验,而我们的平均少量性能优于香草电感无监督的转移和大幅度的监督转移。例如,当每个目标类别仅具有10个标记的样品时,上述两个基准的平均准确性增长分别为9.2%和3.42。

Few-shot learning is challenging due to its very limited data and labels. Recent studies in big transfer (BiT) show that few-shot learning can greatly benefit from pretraining on large scale labeled dataset in a different domain. This paper asks a more challenging question: "can we use as few as possible labels for few-shot learning in both pretraining (with no labels) and fine-tuning (with fewer labels)?". Our key insight is that the clustering of target samples in the feature space is all we need for few-shot finetuning. It explains why the vanilla unsupervised pretraining (poor clustering) is worse than the supervised one. In this paper, we propose transductive unsupervised pretraining that achieves a better clustering by involving target data even though its amount is very limited. The improved clustering result is of great value for identifying the most representative samples ("eigen-samples") for users to label, and in return, continued finetuning with the labeled eigen-samples further improves the clustering. Thus, we propose eigen-finetuning to enable fewer shot learning by leveraging the co-evolution of clustering and eigen-samples in the finetuning. We conduct experiments on 10 different few-shot target datasets, and our average few-shot performance outperforms both vanilla inductive unsupervised transfer and supervised transfer by a large margin. For instance, when each target category only has 10 labeled samples, the mean accuracy gain over the above two baselines is 9.2% and 3.42 respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源