论文标题
从红外音器数据中检索空间噪声感知温度
Spatial noise-aware temperature retrieval from infrared sounder data
论文作者
论文摘要
在本文中,我们提出了一种从红外发声器中检索大气概况的综合策略。该方法考虑了空间信息和降低降维方法。提取的特征被馈入规范的线性回归中。我们比较主成分分析(PCA)和最小噪声分数(MNF),以降低维度,并研究提取特征的紧凑性和信息含量。对结果的评估是在涵盖许多空间和时间情况的大数据集上进行的。 PCA被广泛用于这些目的,但我们的分析表明,使用MNF时,可以显着提高错误率。在我们的分析中,我们还研究了错误率提高的关系,包括回归模型中更多的光谱和空间组件,旨在发现模型复杂性和错误率之间的权衡。
In this paper we present a combined strategy for the retrieval of atmospheric profiles from infrared sounders. The approach considers the spatial information and a noise-dependent dimensionality reduction approach. The extracted features are fed into a canonical linear regression. We compare Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used for these purposes but our analysis shows that one can gain significant improvements of the error rates when using MNF instead. In our analysis we also investigate the relationship between error rate improvements when including more spectral and spatial components in the regression model, aiming to uncover the trade-off between model complexity and error rates.