论文标题

使用时间图神经网络的纵向引文预测

Longitudinal Citation Prediction using Temporal Graph Neural Networks

论文作者

Holm, Andreas Nugaard, Plank, Barbara, Wright, Dustin, Augenstein, Isabelle

论文摘要

引文数预测是预测一段时间后论文获得的引用数量的任务。先前的工作将其视为静态预测任务。随着论文及其引文随着时间的流逝而发展,考虑到论文所收到的引用数量的动态似乎是合乎逻辑的。在这里,我们介绍了序列引文预测的任务。目的是准确预测学术工作随着时间的推移获得的引用数量的轨迹。我们建议将论文视为引用的结构化网络,使我们可以将拓扑信息用作学习信号。此外,我们了解了这种动态引用网络如何随着时间的流逝而变化以及作者,场地和摘要等纸质元数据的影响。为了完成新任务,我们从42年的语义学者中得出了一个动态引用网络。我们提出了一个模型,该模型使用与序列预测配对的图形卷积网络利用拓扑和时间信息,并将其与多个基线进行比较,从而测试拓扑和时间信息的重要性并分析模型性能。我们的实验表明,利用时间和拓扑信息大大提高了随着时间的推移预测引文计数的性能。

Citation count prediction is the task of predicting the number of citations a paper has gained after a period of time. Prior work viewed this as a static prediction task. As papers and their citations evolve over time, considering the dynamics of the number of citations a paper will receive would seem logical. Here, we introduce the task of sequence citation prediction. The goal is to accurately predict the trajectory of the number of citations a scholarly work receives over time. We propose to view papers as a structured network of citations, allowing us to use topological information as a learning signal. Additionally, we learn how this dynamic citation network changes over time and the impact of paper meta-data such as authors, venues and abstracts. To approach the new task, we derive a dynamic citation network from Semantic Scholar spanning over 42 years. We present a model which exploits topological and temporal information using graph convolution networks paired with sequence prediction, and compare it against multiple baselines, testing the importance of topological and temporal information and analyzing model performance. Our experiments show that leveraging both the temporal and topological information greatly increases the performance of predicting citation counts over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源