论文标题

微小的生成对抗网络

Slimmable Generative Adversarial Networks

论文作者

Hou, Liang, Yuan, Zehuan, Huang, Lei, Shen, Huawei, Cheng, Xueqi, Wang, Changhu

论文摘要

近年来,生成的对抗网络(GAN)取得了显着的进步,但是持续不断增长的模型使它们在实际应用中广泛部署的挑战。特别是,对于实时生成任务,由于计算能力的不同,不同的设备需要不同尺寸的生成器。在本文中,我们介绍了微小的甘施(Slimgans),可以灵活地切换发电机的宽度,以适应运行时的各种质量效率折衷。具体而言,我们利用共享部分参数的多个歧视器来训练可靠的发电机。为了促进不同宽度的发电机之间的\ textIt {一致性},我们提出了一种逐步的内置蒸馏技术,该技术鼓励狭窄的发电机向宽阔的发电机学习。至于班级条件生成,我们提出了一个可切片的条件分批归一化,将标签信息纳入不同的宽度。通过广泛的实验和详细的消融研究,我们的方法在定量和定性上都经过验证。

Generative adversarial networks (GANs) have achieved remarkable progress in recent years, but the continuously growing scale of models makes them challenging to deploy widely in practical applications. In particular, for real-time generation tasks, different devices require generators of different sizes due to varying computing power. In this paper, we introduce slimmable GANs (SlimGANs), which can flexibly switch the width of the generator to accommodate various quality-efficiency trade-offs at runtime. Specifically, we leverage multiple discriminators that share partial parameters to train the slimmable generator. To facilitate the \textit{consistency} between generators of different widths, we present a stepwise inplace distillation technique that encourages narrow generators to learn from wide ones. As for class-conditional generation, we propose a sliceable conditional batch normalization that incorporates the label information into different widths. Our methods are validated, both quantitatively and qualitatively, by extensive experiments and a detailed ablation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源