论文标题

HPGAN:使用生成对抗网络的序列搜索

HpGAN: Sequence Search with Generative Adversarial Networks

论文作者

Zhang, Mingxing, Zhou, Zhengchun, Li, Lanping, Liu, Zilong, Yang, Meng, Feng, Yanghe

论文摘要

序列在许多工程应用和系统中起着重要作用。长期以来,具有所需属性的搜索序列一直是一个有趣但充满挑战的研究主题。本文提出了一种称为HPGAN的新方法,用于使用生成对抗网络(GAN)搜索所需的序列算法。 HPGAN基于零和游戏的想法来训练生成模型,该模型可以生成具有类似于训练序列的特征的序列。在HPGAN中,我们将Hopfield网络设计为编码器,以避免GAN生成离散数据的局限性。与代数工具通过传统的序列构建相比,HPGAN特别适合具有预防数学分析的复杂目标的棘手问题。我们在两个应用中演示了HPGAN的搜索功能:1)HPGAN成功地发现了许多不同的互补互补代码集(MOCC)和最佳的奇数Z-C-Complentary Pairs(OB-ZCP),而不是训练集的一部分。在文献中,MOCSS和OB-ZCP都在无线通信中发现了广泛的应用。 2)HPGAN发现了新的序列,可实现与著名的Legendre序列的基本基准的四倍增加,该序列是脉搏压缩雷达系统中的不匹配滤波器(MMF)估计器的基础。这些序列的表现优于Alphaseq发现的序列。

Sequences play an important role in many engineering applications and systems. Searching sequences with desired properties has long been an interesting but also challenging research topic. This article proposes a novel method, called HpGAN, to search desired sequences algorithmically using generative adversarial networks (GAN). HpGAN is based on the idea of zero-sum game to train a generative model, which can generate sequences with characteristics similar to the training sequences. In HpGAN, we design the Hopfield network as an encoder to avoid the limitations of GAN in generating discrete data. Compared with traditional sequence construction by algebraic tools, HpGAN is particularly suitable for intractable problems with complex objectives which prevent mathematical analysis. We demonstrate the search capabilities of HpGAN in two applications: 1) HpGAN successfully found many different mutually orthogonal complementary code sets (MOCCS) and optimal odd-length Z-complementary pairs (OB-ZCPs) which are not part of the training set. In the literature, both MOCSSs and OB-ZCPs have found wide applications in wireless communications. 2) HpGAN found new sequences which achieve four-times increase of signal-to-interference ratio--benchmarked against the well-known Legendre sequence--of a mismatched filter (MMF) estimator in pulse compression radar systems. These sequences outperform those found by AlphaSeq.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源