论文标题
请注意,$ p_g = q = 2 $和$ k^2 = 7 $
Note on a family of surfaces with $p_g=q=2$ and $K^2=7$
论文作者
论文摘要
我们研究了$ p_g = q = 2 $和$ k^2 = 7 $的通用类型表面家族,最初由C. Rito构建。我们提供了这些表面的替代结构,使我们能够描述他们的Albanese地图和相应的基因座$ \ Mathcal {M} $在常规类型表面的模量空间中。特别是我们证明$ \ Mathcal {M} $是一个开放子集,并且具有三个连接的组件,即二维,不可减至且普通。
We study a family of surfaces of general type with $p_g=q=2$ and $K^2=7$, originally constructed by C. Rito. We provide an alternative construction of these surfaces, that allows us to describe their Albanese map and the corresponding locus $\mathcal{M}$ in the moduli space of the surfaces of general type. In particular we prove that $\mathcal{M}$ is an open subset, and it has three connected components, two dimensional, irreducible and generically smooth.