论文标题
关于原始置换群体与非亚伯Socle的共轭类别的数量
On the number of conjugacy classes of a primitive permutation group with nonabelian socle
论文作者
论文摘要
让$ g $是与Nonabelian Socle的原始排列$ n $的原始排列组,让$ k(g)$是$ g $的共轭类别的数量。我们证明$ k(g)<n/2 $和$ k(g)= o(n)$ as $ n \ rightarrow \ infty $,或$ g $属于示例的明确家庭。
Let $G$ be a primitive permutation group of degree $n$ with nonabelian socle, and let $k(G)$ be the number of conjugacy classes of $G$. We prove that either $k(G)<n/2$ and $k(G)=o(n)$ as $n\rightarrow \infty$, or $G$ belongs to explicit families of examples.