论文标题
利用群体级行为模式基于欺骗的建议
Exploiting Group-level Behavior Pattern forSession-based Recommendation
论文作者
论文摘要
基于会话的建议(SBR)是一项具有挑战性的任务,旨在根据匿名行为序列来预测用户的未来兴趣。现有方法利用强大的表示方法将会话编码为低维空间。但是,尽管取得了这些成就,但所有现有的研究都集中在实例级会话学习上,同时忽略了组级用户的偏好,这对于对用户的行为进行建模非常重要。为此,我们提出了一种基于会话建议(RNMSR)的新型重复感知的神经机制。在RNMSR中,我们建议分别从实例级别和组级别学习用户偏好:(i)实例级别,该实例级别在基于相似性的项目pairwise Session Graph上采用GNN,以捕获用户在实例级别中的偏好。 (ii)组级,将会话转换为组级别的行为模式,以建模组级用户的偏好。在RNMSR中,我们将实例级用户的首选项和组级用户偏好结合在一起,以建模用户的重复消耗,\ ie用户是否需要重复消费以及用户首选哪些项目。在三个现实世界数据集(IE Diginetica,YooChoose和现在玩耍)上进行了广泛的实验,这表明所提出的方法在所有测试中都始终达到最先进的性能。
Session-based recommendation (SBR) is a challenging task, which aims to predict users' future interests based on anonymous behavior sequences. Existing methods leverage powerful representation learning approaches to encode sessions into a low-dimensional space. However, despite such achievements, all the existing studies focus on the instance-level session learning, while neglecting the group-level users' preference, which is significant to model the users' behavior. To this end, we propose a novel Repeat-aware Neural Mechanism for Session-based Recommendation (RNMSR). In RNMSR, we propose to learn the user preference from both instance-level and group-level, respectively: (i) instance-level, which employs GNNs on a similarity-based item-pairwise session graph to capture the users' preference in instance-level. (ii) group-level, which converts sessions into group-level behavior patterns to model the group-level users' preference. In RNMSR, we combine instance-level user preference and group-level user preference to model the repeat consumption of users, \ie whether users take repeated consumption and which items are preferred by users. Extensive experiments are conducted on three real-world datasets, \ie Diginetica, Yoochoose, and Nowplaying, demonstrating that the proposed method consistently achieves state-of-the-art performance in all the tests.