论文标题

矩阵乘法和二进制空间划分树:探索

Matrix Multiplication and Binary Space Partitioning Trees : An Exploration

论文作者

Slagle, CNP, Fortnow, Lance

论文摘要

本文中,我们探索了$ a \ in \ mathbb {r}^{m \ times d} $的矩阵乘法的双树算法和$ b \ in \ mathbb {r}^{r}^{d \ times n} $ $ \ mathbb {r}^{d} $,属于与$ω(d^τ)$成比例的radii,小于$ \ arcsin(ε/\ sqrt {2})$在单位$ d $ ball的表面上。该算法利用了确保与所得矩阵中矢量幅度量产物相称的$ε$精度所需的修剪规则。 \ textIt {不幸的是,如果行和列均匀分布在单元$ d $ - 鲍尔的表面,则每个必需群集的预期点在$ d $中呈端快速接近零;因此,该方法需要大量工作才能通过召集。}

Herein we explore a dual tree algorithm for matrix multiplication of $A\in \mathbb{R}^{M\times D}$ and $B\in\mathbb{R}^{D\times N}$, very narrowly effective if the normalized rows of $A$ and columns of $B$, treated as vectors in $\mathbb{R}^{D}$, fall into clusters of order proportionate to $Ω(D^τ)$ with radii less than $\arcsin(ε/\sqrt{2})$ on the surface of the unit $D$-ball. The algorithm leverages a pruning rule necessary to guarantee $ε$ precision proportionate to vector magnitude products in the resultant matrix. \textit{ Unfortunately, if the rows and columns are uniformly distributed on the surface of the unit $D$-ball, then the expected points per required cluster approaches zero exponentially fast in $D$; thus, the approach requires a great deal of work to pass muster.}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源