论文标题

在原子分辨率阶段对比度传输电子显微镜图像中对复杂特征的深度学习分割

Deep Learning Segmentation of Complex Features in Atomic-Resolution Phase Contrast Transmission Electron Microscopy Images

论文作者

Sadre, Robbie, Ophus, Colin, Butko, Anstasiia, Weber, Gunther H

论文摘要

相对比透射电子显微镜(TEM)是对材料局部原子结构进行成像的强大工具。由于其高剂量效率,TEM已大量用于2D材料(例如单层石墨烯)的缺陷结构的研究。但是,即使对于弱散射的样品,相比成像也会产生复杂的非线性对比度。因此,很难使用常规图像处理工具来为相对比度TEM研究开发完全自动化的分析程序。为了对石墨烯的大型样品区域进行自动分析,关键问题之一是分割感兴趣的结构和不需要的结构(例如表面污染物层)。在这项研究中,我们将常规的Bragg过滤方法的性能与基于U-NET体系结构的深度学习程序进行了比较。我们表明,深度学习方法比常规算法更一般,更简单地应用于实践中,并且产生更准确,更健壮的结果。我们为本文的所有结果提供了易于适应的源代码,并讨论了完全自动化的TEM图像分析中深度学习的潜在应用。

Phase contrast transmission electron microscopy (TEM) is a powerful tool for imaging the local atomic structure of materials. TEM has been used heavily in studies of defect structures of 2D materials such as monolayer graphene due to its high dose efficiency. However, phase contrast imaging can produce complex nonlinear contrast, even for weakly-scattering samples. It is therefore difficult to develop fully-automated analysis routines for phase contrast TEM studies using conventional image processing tools. For automated analysis of large sample regions of graphene, one of the key problems is segmentation between the structure of interest and unwanted structures such as surface contaminant layers. In this study, we compare the performance of a conventional Bragg filtering method to a deep learning routine based on the U-Net architecture. We show that the deep learning method is more general, simpler to apply in practice, and produces more accurate and robust results than the conventional algorithm. We provide easily-adaptable source code for all results in this paper, and discuss potential applications for deep learning in fully-automated TEM image analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源