论文标题
双重差异和有限距离渐近对称性在3D重力中
Dual diffeomorphisms and finite distance asymptotic symmetries in 3d gravity
论文作者
论文摘要
我们研究了3D重力最通用的一阶理论的有限距离边界对称电流代数。我们表明,二次发电机的空间包含差异性,但也包含双差异性的概念,它们一起形成了双重witt或无中心的BMS $ _3 $代数。与通常的渐近对称性代数的关系依赖于零方向之间的二元性,这是由于双重差异的存在,这可能是可能的。
We study the finite distance boundary symmetry current algebra of the most general first order theory of 3d gravity. We show that the space of quadratic generators contains diffeomorphisms but also a notion of dual diffeomorphisms, which together form either a double Witt or centreless BMS$_3$ algebra. The relationship with the usual asymptotic symmetry algebra relies on a duality between the null and angular directions, which is possible thanks to the existence of the dual diffeomorphisms.