论文标题
边界拓扑纠缠熵在两个和三个维度
Boundary topological entanglement entropy in two and three dimensions
论文作者
论文摘要
拓扑纠缠熵用于测量拓扑阶段基底状态下的远程量子相关性。在这里,根据其输入融合类别和代数对象的数据,我们获得了(2+1) - 和(3+1) - 二维环气模型的拓扑表达式。我们结果表达的核心是通用$ \ Mathcal {s} $ - 矩阵。我们猜想了这些$ \ Mathcal {s} $矩阵的一般属性,并在许多特殊情况下提供了证明。这包括对排名5的类别的建设性证明。
The topological entanglement entropy is used to measure long-range quantum correlations in the ground state of topological phases. Here we obtain closed form expressions for topological entropy of (2+1)- and (3+1)-dimensional loop gas models, both in the bulk and at their boundaries, in terms of the data of their input fusion categories and algebra objects. Central to the formulation of our results are generalized $\mathcal{S}$-matrices. We conjecture a general property of these $\mathcal{S}$-matrices, with proofs provided in many special cases. This includes constructive proofs for categories up to rank 5.