论文标题
原子到梅索的多尺度数据驱动的图形替代脱位滑行
Atomistic-to-Meso Multi-Scale Data-Driven Graph Surrogate Modeling of Dislocation Glide
论文作者
论文摘要
从制造过程中的出生开始,材料固有地包含了影响多个长度和时间尺度的机械行为的缺陷,包括空位,位错,空隙和裂纹。因此,对潜在的随机微结构缺陷进化的理解,建模和实时仿真对于多尺度耦合和传播来自原子性到最终衰老连续性力学的多种不确定性来源至关重要。我们开发了一个基于图的替代位如何的替代模型,用于计算位错迁移率的计算。我们将边缘错位建模为随机步行者,在泊松随机过程之后,在图形的相邻节点之间跳跃。网络表示是分子动力学模拟的粗粒,该模拟为跳跃速率的经验计算提供了脱位轨迹。通过这种结构,我们以显着的计算加速和准确性来恢复原始的原子移动性估计值。此外,潜在的随机过程提供了与原始分子动力学仿真相关的脱位迁移率的统计,从而使材料参数和不确定性在整个尺度上有效地传播。
From their birth in the manufacturing process, materials inherently contain defects that affect the mechanical behavior across multiple length and time-scales, including vacancies, dislocations, voids and cracks. Understanding, modeling, and real-time simulation of the underlying stochastic micro-structure defect evolution is therefore vital towards multi-scale coupling and propagating numerous sources of uncertainty from atomistic to eventually aging continuum mechanics. We develop a graph-based surrogate model of dislocation glide for computation of dislocation mobility. We model an edge dislocation as a random walker, jumping between neighboring nodes of a graph following a Poisson stochastic process. The network representation functions as a coarse-graining of a molecular dynamics simulation that provides dislocation trajectories for an empirical computation of jump rates. With this construction, we recover the original atomistic mobility estimates, with remarkable computational speed-up and accuracy. Furthermore, the underlying stochastic process provides the statistics of dislocation mobility associated to the original molecular dynamics simulation, allowing an efficient propagation of material parameters and uncertainties across the scales.