论文标题

跟踪交互状态多转向文本到SQL语义解析

Tracking Interaction States for Multi-Turn Text-to-SQL Semantic Parsing

论文作者

Wang, Run-Ze, Ling, Zhen-Hua, Zhou, Jing-Bo, Hu, Yu

论文摘要

多转移文本到SQL语义解析的任务旨在将互动中的自然语言转换为SQL查询,以便使用通常包含多个表格架的数据库来回答它们。对此任务的先前研究通常利用上下文信息来丰富话语表示并进一步影响解码过程。尽管他们忽略了描述和跟踪由历史sql查询决定的相互作用状态,并且与当前话语的意图有关。在本文中,根据模式项目和SQL关键字分别定义了两种相互作用状态。关系图神经网络和非线性层旨在分别更新这两个状态的表示。然后,使用动态模式状态和SQL状态表示来解码与当前话语相对应的SQL查询。有关挑战性COSQL数据集的实验结果证明了我们提出的方法的有效性,该方法比在任务排行榜上的其他已发表的方法更好。

The task of multi-turn text-to-SQL semantic parsing aims to translate natural language utterances in an interaction into SQL queries in order to answer them using a database which normally contains multiple table schemas. Previous studies on this task usually utilized contextual information to enrich utterance representations and to further influence the decoding process. While they ignored to describe and track the interaction states which are determined by history SQL queries and are related with the intent of current utterance. In this paper, two kinds of interaction states are defined based on schema items and SQL keywords separately. A relational graph neural network and a non-linear layer are designed to update the representations of these two states respectively. The dynamic schema-state and SQL-state representations are then utilized to decode the SQL query corresponding to current utterance. Experimental results on the challenging CoSQL dataset demonstrate the effectiveness of our proposed method, which achieves better performance than other published methods on the task leaderboard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源