论文标题

具有高阶相互作用的多人群振荡器网络

Multi-Population Phase Oscillator Networks with Higher-Order Interactions

论文作者

Bick, Christian, Böhle, Tobias, Kuehn, Christian

论文摘要

经典的库拉莫托模型由圆上有限的许多成对耦合振荡器组成。在许多应用中,简单的成对耦合不足以将现实现象描述为发生的高阶(或组)相互作用。因此,我们用涉及高阶项的非常通用的耦合函数代替了经典耦合定律。此外,我们允许通过非常一般的法律相互相互作用的多个振荡器种群。在我们的分析中,我们专注于特征系统和这种广义类型库拉莫托模型的平均场限制。虽然有几项研究我们计划的特定方面的工作,但我们提出了一个一般框架,以同时处理所有三个方面(高阶,多人口和均值场)。假设每个人群中的振荡器相同,我们将在平均场限制中得出振荡器种群演变的方程式。首先,我们阐明了我们一组特征方程的存在和独特性,这些方程是在概率度量的空间中与有限的lipschitz指标一起提出的。然后,我们研究了特征系统框架内的动态属性。我们确定了状态的不变子空间和稳定性,其中所有振荡器在每个人群中都同步。尽管事实证明,在某些条件下,这种所谓的全同步状态永远不会渐近稳定,并且具有适当的稳定性定义,但可以证明,全同步状态至少可以在本地稳定。总而言之,我们的工作提供了一个严格的数学框架,可以在该框架上进一步研究高阶耦合粒子系统的进一步研究。

The classical Kuramoto model consists of finitely many pairwise coupled oscillators on the circle. In many applications a simple pairwise coupling is not sufficient to describe real-world phenomena as higher-order (or group) interactions take place. Hence, we replace the classical coupling law with a very general coupling function involving higher-order terms. Furthermore, we allow for multiple populations of oscillators interacting with each other through a very general law. In our analysis, we focus on the characteristic system and the mean-field limit of this generalized class of Kuramoto models. While there are several works studying particular aspects of our program, we propose a general framework to work with all three aspects (higher-order, multi-population, and mean-field) simultaneously. Assuming identical oscillators in each population, we derive equations for the evolution of oscillator populations in the mean-field limit. First, we clarify existence and uniqueness of our set of characteristic equations, which are formulated in the space of probability measures together with the bounded-Lipschitz metric. Then, we investigate dynamical properties within the framework of the characteristic system. We identify invariant subspaces and stability of the state, in which all oscillators are synchronized within each population. Even though it turns out that this so called all-synchronized state is never asymptotically stable, under some conditions and with a suitable definition of stability, the all-synchronized state can be proven to be at least locally stable. In summary, our work provides a rigorous mathematical framework upon which the further study of multi-population higher-order coupled particle systems can be based.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源