论文标题

5G-NR MM波网络的转移加固学习

Transfer Reinforcement Learning for 5G-NR mm-Wave Networks

论文作者

Elsayed, Medhat, Erol-Kantarci, Melike, Yanikomeroglu, Halim

论文摘要

在本文中,我们旨在通过采用波束形成和非正交多访问(NOMA)技术来改善网络的总速率,以减轻5G毫米波(MM-WAVE)通信。尽管MM波和Noma的潜在能力增加,但许多技术挑战可能会阻碍性能增长。特别是,随着用户数量的增加,连续的干扰取消(SIC)的性能会迅速减少,从而导致梁内部干扰更高。此外,相邻细胞之间的交点区域会引起梁间间间的干扰。为了减轻两个干扰水平,除了最佳分配用户对这些梁的分配外,还必须最佳选择光束数量。在本文中,我们解决了联合用户细胞关联的问题和梁数量的选择,以最大程度地提高总网络容量。我们提出了三种基于机器学习的算法;传递Q-学习(TQL),Q学习和最佳SINR关联,并与基于密度的空间聚类使用噪声(BSDC)算法的应用程序聚类,并在不同的情况下比较其性能。在移动性下,TQL和Q-学习表明,在提供最高的交通负载下,BSDC比率提高了12%。对于固定场景,与Q学习相比,Q学习和BSDC的表现优于TQL,但TQL的收敛速度约为29%。

In this paper, we aim at interference mitigation in 5G millimeter-Wave (mm-Wave) communications by employing beamforming and Non-Orthogonal Multiple Access (NOMA) techniques with the aim of improving network's aggregate rate. Despite the potential capacity gains of mm-Wave and NOMA, many technical challenges might hinder that performance gain. In particular, the performance of Successive Interference Cancellation (SIC) diminishes rapidly as the number of users increases per beam, which leads to higher intra-beam interference. Furthermore, intersection regions between adjacent cells give rise to inter-beam inter-cell interference. To mitigate both interference levels, optimal selection of the number of beams in addition to best allocation of users to those beams is essential. In this paper, we address the problem of joint user-cell association and selection of number of beams for the purpose of maximizing the aggregate network capacity. We propose three machine learning-based algorithms; transfer Q-learning (TQL), Q-learning, and Best SINR association with Density-based Spatial Clustering of Applications with Noise (BSDC) algorithms and compare their performance under different scenarios. Under mobility, TQL and Q-learning demonstrate 12% rate improvement over BSDC at the highest offered traffic load. For stationary scenarios, Q-learning and BSDC outperform TQL, however TQL achieves about 29% convergence speedup compared to Q-learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源