论文标题
稳定性分析和对分数HIV-AIDS流行模型的最佳控制,并具有记忆和一般发病率
Stability analysis and optimal control of a fractional HIV-AIDS epidemic model with memory and general incidence rate
论文作者
论文摘要
我们研究了著名的数学SICA模型,但使用分数微分方程来更好地描述HIV-AIDS感染的动态。感染过程是通过一般功能反应建模的,记忆效应由Caputo分数衍生物描述。平衡点的稳定性和不稳定性是根据基本繁殖数确定的。此外,制定了分数最佳控制系统,并通过基于派生的必要最佳条件来确定疾病传播到人群中的最佳策略。
We investigate the celebrated mathematical SICA model but using fractional differential equations in order to better describe the dynamics of HIV-AIDS infection. The infection process is modelled by a general functional response and the memory effect is described by the Caputo fractional derivative. Stability and instability of equilibrium points are determined in terms of the basic reproduction number. Furthermore, a fractional optimal control system is formulated and the best strategy for minimizing the spread of the disease into the population is determined through numerical simulations based on the derived necessary optimality conditions.