论文标题

数据驱动的分析框架,用于使用移动设备位置数据估算多模式旅行需求模式

A Data-Driven Analytical Framework of Estimating Multimodal Travel Demand Patterns using Mobile Device Location Data

论文作者

Xiong, Chenfeng, Darzi, Aref, Pan, Yixuan, Ghader, Sepehr, Zhang, Lei

论文摘要

智能手机及其基于位置的服务使人们的日常生活受益,但他们正在生成大量的移动设备位置数据,这些数据具有巨大的潜力,可以帮助我们了解旅行需求模式并为未来提供运输计划。尽管最近的研究已经使用此类数据来源分析了人类旅行行为,但已进行了有限的研究来提取它们的多模式旅行需求模式。本文提出了一个数据驱动的分析框架,以弥合差距。为了能够使用被动收集的位置信息成功检测旅行模式,我们进行了基于智能手机的GPS调查以收集地面真相观察。然后,开发了一个经过训练的单层模型和深层神经网络,用于旅行模式插补。该模型同时成为“宽”和“深”,结合了两种模型的优势。该框架还结合了多模式运输网络,以评估旅行路线与附近的铁路,地铁,高速公路和公交线的紧密度,从而提高了插补精度。为了展示引入的框架在满足现实世界计划需求时的应用程序,通过行程最终识别和属性生成处理单独的移动设备位置数据,以直接应用旅行模式插补。然后,在华盛顿特区和巴尔的摩大都会地区的典型家庭旅行调查中对估计的多模式旅行需求模式进行了验证。

While benefiting people's daily life in so many ways, smartphones and their location-based services are generating massive mobile device location data that has great potential to help us understand travel demand patterns and make transportation planning for the future. While recent studies have analyzed human travel behavior using such new data sources, limited research has been done to extract multimodal travel demand patterns out of them. This paper presents a data-driven analytical framework to bridge the gap. To be able to successfully detect travel modes using the passively collected location information, we conduct a smartphone-based GPS survey to collect ground truth observations. Then a jointly trained single-layer model and deep neural network for travel mode imputation is developed. Being "wide" and "deep" at the same time, this model combines the advantages of both types of models. The framework also incorporates the multimodal transportation network in order to evaluate the closeness of trip routes to the nearby rail, metro, highway and bus lines and therefore enhance the imputation accuracy. To showcase the applications of the introduced framework in answering real-world planning needs, a separate mobile device location data is processed through trip end identification and attribute generation, in a way that the travel mode imputation can be directly applied. The estimated multimodal travel demand patterns are then validated against typical household travel surveys in the same Washington D.C. and Baltimore Metropolitan Regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源