论文标题

2步稀疏视图CT重建具有特定域的感知网络

2-Step Sparse-View CT Reconstruction with a Domain-Specific Perceptual Network

论文作者

Wei, Haoyu, Schiffers, Florian, Würfl, Tobias, Shen, Daming, Kim, Daniel, Katsaggelos, Aggelos K., Cossairt, Oliver

论文摘要

计算机断层扫描被广泛用于以非破坏性方式检查内部结构。为了获得高质量的重建,通常必须获得密集的采样轨迹,以避免棱角分散采样。但是,许多情况需要进行稀疏的观察测量,如果不被提示,则会导致条纹形成。当前方法不会充分利用特定于域的信息,因此无法为高度不足的数据提供可靠的重建。我们通过将重建分解为两个步骤,为稀疏视图断层扫描提供了一个新颖的框架:首先,我们使用超分辨率网络SIN(对稀疏预测训练)克服了其不良性。中间结果允许封闭形式的层析成像重建,并保留细节和高度降低的条纹形象。其次,对重建进行培训的改进网络PRN减少了任何剩余的伪像。我们进一步提出了感知损失的轻量级变体,该变体增强了特定于域的信息,从而提高了恢复精度。我们的实验证明了4 dB对当前溶液的改善。

Computed tomography is widely used to examine internal structures in a non-destructive manner. To obtain high-quality reconstructions, one typically has to acquire a densely sampled trajectory to avoid angular undersampling. However, many scenarios require a sparse-view measurement leading to streak-artifacts if unaccounted for. Current methods do not make full use of the domain-specific information, and hence fail to provide reliable reconstructions for highly undersampled data. We present a novel framework for sparse-view tomography by decoupling the reconstruction into two steps: First, we overcome its ill-posedness using a super-resolution network, SIN, trained on the sparse projections. The intermediate result allows for a closed-form tomographic reconstruction with preserved details and highly reduced streak-artifacts. Second, a refinement network, PRN, trained on the reconstructions reduces any remaining artifacts. We further propose a light-weight variant of the perceptual-loss that enhances domain-specific information, boosting restoration accuracy. Our experiments demonstrate an improvement over current solutions by 4 dB.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源