论文标题
基于图形的生成表示语义和行为增强的平面图学习
Graph-Based Generative Representation Learning of Semantically and Behaviorally Augmented Floorplans
论文作者
论文摘要
平面图通常用于表示建筑物的布局。在计算机辅助设计中(CAD)的平面图通常以分层图结构的形式表示。研究旨在促进促进设计过程的计算技术,例如自动分析和优化,经常使用简单的平面图,这些平面图忽略了空间的语义,并且不考虑与用法相关的分析。我们提出了一种平面图嵌入技术,该技术使用属性图来表示居民作为节点和边缘属性的几何信息以及设计语义和行为特征。提出了长期的短期内存(LSTM)变量自动编码器(VAE)体系结构,并训练以嵌入属性图作为连续空间中的向量。进行了一项用户研究,以评估从嵌入空间中获得的相似平面图相对于给定输入(例如,设计布局)的耦合。定性,定量和用户研究的评估表明,我们的嵌入框架为平面图生成有意义且准确的矢量表示。此外,我们提出的模型是一个生成模型。我们研究并展示了其生成新平面图的有效性。我们还发布了我们已经构建的数据集,并且对于每个平面图,都包括设计语义属性以及模拟生成的人类行为特征,以在社区中进行进一步研究。
Floorplans are commonly used to represent the layout of buildings. In computer aided-design (CAD) floorplans are usually represented in the form of hierarchical graph structures. Research works towards computational techniques that facilitate the design process, such as automated analysis and optimization, often use simple floorplan representations that ignore the semantics of the space and do not take into account usage related analytics. We present a floorplan embedding technique that uses an attributed graph to represent the geometric information as well as design semantics and behavioral features of the inhabitants as node and edge attributes. A Long Short-Term Memory (LSTM) Variational Autoencoder (VAE) architecture is proposed and trained to embed attributed graphs as vectors in a continuous space. A user study is conducted to evaluate the coupling of similar floorplans retrieved from the embedding space with respect to a given input (e.g., design layout). The qualitative, quantitative and user-study evaluations show that our embedding framework produces meaningful and accurate vector representations for floorplans. In addition, our proposed model is a generative model. We studied and showcased its effectiveness for generating new floorplans. We also release the dataset that we have constructed and which, for each floorplan, includes the design semantics attributes as well as simulation generated human behavioral features for further study in the community.