论文标题
经典对称性和量子近似优化算法
Classical symmetries and the Quantum Approximate Optimization Algorithm
论文作者
论文摘要
我们研究量子近似优化算法(QAOA)与要优化目标函数的基本对称性之间的关系。我们的方法正式将QAOA动力学的量子对称性和目标函数的经典对称性组形式化。该连接是一般的,包括但不限于图表上定义的问题。我们展示了一系列的结果,探讨了连接,并突出了难题类别的示例,在这些类别中可以有效地获得非平凡的对称子组。特别是我们展示了经典的目标函数对称如何导致通过这种对称性连接的状态之间不变的测量结果概率,而与算法参数的选择无关。为了说明开发的连接的力量,我们将机器学习技术应用于基于对称性考虑的QAOA性能。我们提供数值证据表明,在QAOA参数计划的实际情况下,在QAOA参数计划的实际设置中,一小组图形对称性足以预测实现目标近似值所需的最小QAOA深度,在这种环境中,QAOA参数计划被限制为线性,因此更易于优化。
We study the relationship between the Quantum Approximate Optimization Algorithm (QAOA) and the underlying symmetries of the objective function to be optimized. Our approach formalizes the connection between quantum symmetry properties of the QAOA dynamics and the group of classical symmetries of the objective function. The connection is general and includes but is not limited to problems defined on graphs. We show a series of results exploring the connection and highlight examples of hard problem classes where a nontrivial symmetry subgroup can be obtained efficiently. In particular we show how classical objective function symmetries lead to invariant measurement outcome probabilities across states connected by such symmetries, independent of the choice of algorithm parameters or number of layers. To illustrate the power of the developed connection, we apply machine learning techniques towards predicting QAOA performance based on symmetry considerations. We provide numerical evidence that a small set of graph symmetry properties suffices to predict the minimum QAOA depth required to achieve a target approximation ratio on the MaxCut problem, in a practically important setting where QAOA parameter schedules are constrained to be linear and hence easier to optimize.